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ANALYSIS OF M-STATIONARY POINTS TO AN EPEC MODELING
OLIGOPOLISTIC COMPETITION IN AN ELECTRICITY SPOT MARKET ∗
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Abstract. We consider an equilibrium problem with equilibrium constraints (EPEC) arising from the
modeling of competition in an electricity spot market (under ISO regulation). For a characterization of
equilibrium solutions, so-called M-stationarity conditions are derived. This first requires a structural
analysis of the problem, e.g., verifying constraint qualifications. Second, the calmness property of
a certain multifunction has to be verified in order to justify using M-stationarity conditions. Third,
for stating the stationarity conditions, the coderivative of a normal cone mapping has to be calculated.
Finally, the obtained necessary conditions are made fully explicit in terms of the problem data for one
typical constellation. A simple two-settlement example serves as an illustration.
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1. Introduction

In this article, we investigate a certain type of two-level game as it arises from a specific spot market model
in power production. On the upper level of this game n players wish to minimize their objectives fi, by using
a strategy xi from their respective set of admissible strategies Xi ⊆ R

s. However, the value of fi is dependent
also on the solution z of a lower level optimization problem parameterized by the set of decisions of all (upper-
level) players. In this way, the players decisions are coupled implicitly. We consider a setting where the solution z
of the lower level optimization problem is characterized by a generalized equation

0 ∈ F (x, z) + NC(z), (1.1)

where F ∈ C1(Rns+t; Rt) and C ⊆ R
t is a closed set. We will also make use of the common notation

x−i := (x1, . . . , xi−1, xi+1, . . . , xn)

Keywords and phrases. Equilibrium problems with equilibrium constraints, EPEC, M-stationary solutions, electricity spot
market, calmness.

∗ This work was supported by the DFG Research Center Matheon “Mathematics for key technologies” in Berlin and by the
Grant Agency of the Czech Republic (Grant No. 201/09/1957).
1 Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany. henrion@wias-berlin.de
2 Institute of Information Theory and Automation, 18208 Praha 8, Czech Republic. outrata@utia.cas.cz
3 Humboldt University Berlin, Unter den Linden 6, 10099 Berlin, Germany. surowiec@math.hu-berlin.de

Article published by EDP Sciences c© EDP Sciences, SMAI 2011

http://dx.doi.org/10.1051/cocv/2011003
http://www.esaim-cocv.org
http://www.edpsciences.org


296 R. HENRION ET AL.

for the vector of decisions of player i’s competitors. In order to simplify the notation, we adopt the convention
x = (x−i, xi) for all i.

Now, according to the previous remarks, each player i solves an optimization problem of the type

min
xi∈Xi,z∈C

{fi (xi, z) |0 ∈ F (x−i, xi, z) + NC(z)} (i = 1, . . . , n), (1.2)

where the competitors decisions x−i appear as exterior parameters. These optimization problems are not of
standard type as they involve constraints which are solutions of another optimization problem themselves, i.e.,
a type equilibrium constraint. This in turn classifies the component problems as mathematical program with
equilibrium constraints or an MPEC for short (see e.g., [15] or [22]). The collection (1.2) of all n mutually
coupled MPECs is called an equilibrium problem with equilibrium constraints or an EPEC for short. While the
solution concept for an MPEC is obvious from the optimization context, a solution of the EPEC has to be
interpreted in the sense of a Nash equilibrium. More precisely, we say that a vector (x̄, z̄) is a (local) solution
to (1.2), if for all i = 1, . . . , n, the pair (x̄i, z̄) belongs to the set of (local) solutions to the MPEC

min
xi∈Xi,z∈C

{fi (xi, z) |0 ∈ F (x̄−i, xi, z) + NC(z)} .

It should be mentioned here that EPECs may have a more general form than presented here. For instance, the
objectives could also depend on the decisions of the competitors, as in a classical Nash-Cournot equilibrium,
or (1.1) might represent some general equilibrium constraint, not just the solution set of an optimization problem.
Our setting here is inspired by the application to the spot market model we have in mind.

The goal of this paper is to demonstrate how in a concrete application, one can use a certain type of
stationarity conditions that EPEC solutions must necessarily satisfy. More precisely, we are dealing with so-
called M-stationary points, which rely on first order necessary optimality conditions derived via the limiting
normal cone as introduced by Mordukhovich (see [16] or [17] and the references therein). The usefulness
of M-stationarity in the context of MPECs or EPECs has been widely demonstrated in the literature (e.g.,
[4,17,20,21,28]). We apply the methodology to an equilibrium problem in a so-called ISO regulated oligopolistic
electricity market. Though the model is somewhat simplified in order to facilitate the analysis, we strive to
keep the most meaningful facets intact. It is inspired by related work in [6,11,12] and one that has recently
been investigated in [7]. We also mention the interesting work in [26,27] devoted to EPECs/MPECs in market
models though not related with M-stationarity as considered here.

Besides M- (or Mordukhovich-) stationarity, several other dual stationarity concepts are well established
in the MPEC literature (e.g., C- (or Clarke-) stationarity and S- (or strong) stationarity). All these notions
require the verification of certain constraint qualifications before they give rise to necessary optimality condi-
tions. Although S-stationarity yields the strongest characterization among these, it suffers from the substantial
drawback of relying on a restrictive constraint qualification which is hardly satisfied in our application. In
contrast, in basically all situations of our application we are able to verify the constraint qualification needed
for M-stationarity (calmness), which in turn yields a substantially stronger characterization of solutions than
C-stationarity.

The paper is organized as follows: after an introducing some basic concepts needed in Section 2, we present
the spot market model in Section 3 and analyze its basic structural properties in Section 4. Section 5 then is
devoted to M-stationarity conditions in general and to the verification of the needed constraint qualifications
in the concrete setting of the spot market model. In Section 6, we show how the usage of a transformation
formula for the Mordukhovich coderivative leads to the derivation of explicit M-stationarity conditions. Concrete
formulae are provided in a special case and for a small example (two settlements) the issue of one producer
becoming inactive in an equilibrium state is investigated. Finally, Section 7 presents a calmness result for
a special non-polyhedral multifunction which is crucial for checking the constraint qualification mentioned
above. As this result if of a general nature, it is left to the end of the text and can thus be considered as an
independent contribution.
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2. Concepts and tools from variational analysis

In this section, we provide some concepts and definitions facilitating our analysis. We begin with some
stability concepts for multifunctions. Let Φ : R

s ⇒ R
t be a multifunction, (x̄, z̄) ∈ gphΦ, where gph Φ :=

{(x, z) | z ∈ Φ(x)}. Then Φ is said to have the Aubin property around (x̄, z̄) provided there exists neighborhoods
U ⊆ R

s of x̄ and V ⊆ R
t of z̄, and a constant L > 0 such that

d(z, Φ(x′′)) ≤ L||x′ − x′′|| ∀z ∈ V ∩ Φ(x′) ∀x′, x′′ ∈ U .

Here, d(z, Φ(x̄)) = infz′∈Φ(x̄) ||z − z′||. A weaker Lipschitz property is obtained when fixing one of the
x-arguments as x̄. More precisely we say that Φ is calm at (x̄, z̄) provided there exists neighborhoods U ⊆ R

s

of x̄ and V ⊆ R
t of z̄, and a constant L > 0 such that

d(z, Φ(x̄)) ≤ L||x′ − x̄||, ∀z ∈ V ∩ Φ(x′), ∀x′ ∈ U .

Setting V ≡ R
t in the previous definition corresponds to the so-called upper Lipschitzian property. Next, let

(x̄, z̄) be a solution to the generalized equation (1.1) and define the multifunction Σ : R
t ⇒ R

t via a local partial
linearization of (1.1)

Σ(ξ) :=
{
z ∈ R

t |ξ ∈ F (x̄, z̄) + ∇zF (x̄, z̄)(z − z̄) + NC(z)
}

.

Suppose now that there exist neighborhoods W of 0 ∈ R
t and V of z̄ such that the map ξ 	→ Σ(ξ) ∩ V is

single-valued and Lipschitz on W with modulus κ. Then (1.1) is called strongly regular at (x̄, z̄), with Lipschitz
modulus κ. Given the solution mapping of (1.1)

S(x) :=
{
z ∈ R

t |0 ∈ F (x, z) + NC(z)
}

,

we know from Robinson ([24], Thm. 2.1) that if (1.1) is strongly regular at (x̄, z̄), then for any ε > 0 there exist
neighborhoods Uε of x̄ and Vε of z̄ such that the mapping x 	→ S(x) ∩ Vε is single-valued and Lipschitz on Uε

with Lipschitz modulus (κ + ε)L, where L is the uniform Lipschitz modulus of F (·, z) on Uε for all z ∈ Vε.
In the following, we introduce the Mordukhovich coderivative of a multifunction. Recall first that, for a closed

set C ⊆ R
t and a point z̄ ∈ C, the contingent or Bouligand cone to C at z̄ ∈ C is defined as

TC(z̄) := Lim sup
τ↘0

τ−1(C − z̄) =
{
d ∈ R

t |∃τk ↘ 0, ∃dk → d : ∀k, z̄ + τkdk ∈ C
}

.

Here, “Lim sup” is to be understood as the upper limit of sets in the sense of Painlevé-Kuratowski (cf. [25]).
Accordingly, the Fréchet normal cone to C at z̄ ∈ C comes as the dual to the contingent cone:

N̂C(z̄) := [TC(z̄)]◦.

Then the limiting or Mordukhovich normal cone to C at z̄ ∈ C is derived from the Fréchet normal cone in the
following manner

NC(z̄) := Lim sup
z→z̄
z∈C

N̂C(z).

Using the Mordukhovich normal cone, we can lastly define the following coderivative for a set-valued function Φ

D∗Φ (x̄, z̄) (v∗) = {x∗ ∈ R
s| (x∗,−v∗) ∈ Ngph Φ (x̄, z̄)} ∀v∗ ∈ R

t,

where (x̄, z̄) ∈ gphΦ.
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3. An EPEC modeling competition in an electricity spot market

We now present the spot market EPEC. Assume that the electricity network of interest is represented by
a connected oriented graph with m edges (transmission lines) and N nodes. Throughout this paper, B ∈ R

N×m

is used to represent the incidence matrix of the electricity network, with entries

bij =

⎧⎨⎩
1 if edge j enters node i
−1 if edge j leaves node i
0 otherwise.

We assume that at each node, an electricity producer is located. In contrast, we allow some zero demands at
some of the nodes under the (trivial) assumption that total network demand is strictly positive. The satisfaction
of demand in each node of the network can be modeled as

q + By ≥ d + L(y). (3.1)

Here, y ∈ R
m denotes the oriented flow vector of electricity along the edges of the graph and d, q ∈ R

N represent
the vectors of demand and electricity generated at each node, respectively. In addition, the vector L(y) collects
the amount of electricity lost at the different nodes due to transmission for a given flow y. Thus, q + By−L(y)
provides the vector of electricity available at the given nodes (= production + transmission – losses) explaining
the relation (3.1). As noted in [6], it is reasonable to use the following explicit form for the loss function:

L(y) =
(

1
2
∑m

j=1 |b1j |ρjy
2
j , . . . ,

1
2
∑m

j=1 |bNj |ρjy
2
j

)T

. (3.2)

Here, ρj ≥ 0 is the loss coefficient of line j, for all j = 1, . . . , m. In this paper, we investigate both the
case of positive losses, which is more realistic, but requires numerical procedures for the identification of EPEC
solutions; and the loss-free case, which might be a good approximation only in networks with short transmission
lines, yet it allows us to identify some explicit qualitative relations for EPEC solutions. Additionally, we impose
the following bounds on production and flow

0 ≤ qi ≤ q̂i (i = 1, . . . , N) − ŷj ≤ yj ≤ ŷj (j = 1, . . . , m).

Electricity spot market models are structured in such a way so that each of the competing generators bids
a certain cost function to an independent system operator (ISO). In real spot markets, these cost functions are
typically step functions which are difficult to cope with analytically. Therefore, following [11,12] (though the
usage of quadratic bid functions goes back much further, see e.g., [3]), we assume cost functions are defined:

ci(αi, βi, qi) = αiqi + βiq
2
i (i = 1, . . . , N).

Nevertheless, the linear and quadratic cost coefficients αi and βi of the bidding functions may in reality differ
from the true cost coefficients γi and δi, respectively, yet it is assumed that neither the ISO nor the other
generators know the competitors’ true cost coefficients. Hence, the ISO determines generation and flow such
that demand is met in each node of the network and that the overall costs are minimized given the bid cost
functions ci(αi, βi, qi)

min
q,y

{
N∑

i=1

ci(αi, βi, qi) | (q, y) ∈ G

}
, (3.3)

where
G :=

{
(q, y) ∈ R

N+m | q + By ≥ d + L(y), 0 ≤ q ≤ q̂, −ŷ ≤ y ≤ ŷ
}

.
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The vector (α, β) appears only as a perturbation parameter in (3.3) and is therefore not considered a decision
variable on this level. This parametric optimization problem is referred to as the ISO problem. For β ∈ R

N

with βi ≥ 0 for i = 1, . . . , N , the objective function is convex. In such cases, we know that the corresponding
optimal solutions (q′, y′) are characterized as solutions of the following generalized equation arising from the
KKT conditions of (3.3)

0 ∈
(

α + 2[diag β]q
0

)
+ NG(q, y). (3.4)

Here, we use [diag β] to denote the diagonal matrix with entries βi along the diagonal and NG to denote the
normal cone in the sense of convex analysis.

In order to derive each generator’s profit function, we need to know the clearing prices πi = αi + 2βiqi

which are the derivatives of the corresponding cost function with respect to qi. Now, the profit of generator i
is calculated to be the price times produced quantity of electricity minus production costs:

fi(αi, βi, q, y) = πiqi − γiqi − δiq
2
i = (αi − γi)qi + (2βi − δi)q2

i .

In order to define our EPEC solution as a classical non-cooperative or Nash-Cournot equilibrium, we require
that each generator i solves the following mathematical program with equilibrium constraints (MPEC), which
is formed from (3.4) by fixing the decisions of all other competitors

max
(αi,βi)∈R

2

q,y

{
fi(αi, βi, q, y)

∣∣∣∣0 ∈
(

ζ(αi, βi, q)
0

)
+ NG(q, y)

}
(i = 1, . . . , N),

where ζ(αi, βi, q) := (ᾱ−i, αi) + 2[diag (β̄−i, βi)]q. Then the coupled system of MPECs sharing the same equi-
librium constraint represents an equilibrium problem with equilibrium constraints (EPEC)

min
(αi,βi)∈R

2

q,y

{
−fi(αi, βi, q, y)

∣∣∣∣0 ∈
(

α + 2[diag β]q
0

)
+ NG(q, y)

}
(i = 1, . . . , N).

Defining

F (α, β, q, y) :=
(

α + 2[diag β]q
0

)
,

we can rewrite our spot market EPEC in the compact form

min
(αi,βi)∈R

2

q,y

{−fi(αi, βi, q, y) |0 ∈ F (α, β, q, y) + NG(q, y)} (i = 1, . . . , N). (3.5)

In order to unburden our analysis from technical difficulties in very specific situations, we introduce a restricted
class of solutions to (3.5). More precisely, we consider solutions (ᾱ, β̄, q̄, ȳ) such that

ᾱi, β̄i > 0 i = 1, . . . , N
q̄i > 0 i = 1, . . . , l
q̄i = 0 i = l + 1, . . . , N

−ŷj < ȳj < ŷj j = 1, . . . , k
ȳj = ŷj j = k + 1, . . . , m

(3.6)

As in [7], we only consider strictly positive bidding coefficients. Disregarding zero coefficients allows us to
avoid economically nonsensical or pathological situations. In addition to the types of solutions analyzed in [7],
we consider cases wherein certain transmission lines become congested, electricity is lost due to resistance,
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and some producers may not be participating at equilibrium. These considerations add a new level of difficulty
to the analysis.

More precisely, we assume without loss of generality that only the first l ≥ 1 generators are active. Note
that l = 0 is excluded since total demand is positive. Therefore, at least one producer must be active. The
identification of situations where certain market participants are forced to become non-active seems to be of
economic and at the same time of mathematical interest because it is here where the nonsmooth character
of the problem emerges. It would only add to notational, not mathematical, difficulty to consider generation
quantities reaching their respective upper bounds. This holds similarly for congestion. We therefore assume
that the first k transmission lines are uncongested, whereas transmission along the remaining ones reaches the
upper capacity. Again, the consideration of lower capacities would only increase the notational complexity.

Finally, we mention that the focus of our presentation is not on a fully adequate description of the power flow
model, but on the illustration of the M-stationarity concept for an EPEC carrying the main structural properties
of an idealized ISO problem. Our model follows [6] and other references and ignores Kirchhoff’s voltage law for
simplifying the structural analysis. However, it does consider power loss along transmission lines. By adding
Kirchhoff’s voltage law (while ignoring power loss) one would arrive at the linearized DC power flow model (see,
e.g., [10]).

4. Structural properties of the ISO problem

In this section, we compile some structural properties of the ISO problem (3.3) required for the application
of results on stationarity conditions appearing later in Section 5.

For convenience, we partition q = (q(1), q(2)) ∈ R
l×R

N−l and y = (y(1), y(2)) ∈ R
k×R

m−k. Given the feasible
set G from the ISO problem (3.3), it is easy to see that near solutions satisfying (3.6), G can be described by

G =
{
(q, y) ∈ R

N+m |H(q, y) ≤ 0
}

. (4.1)

Here, H : R
N+m → R

2N−l+m−k is the twice continuously differentiable mapping defined by the inequalities
that are active near solutions of the type given in (3.6)

H(q, y) :=

⎛⎝ d + L(y) − q − By

−q(2)

y(2) − ŷ(2)

⎞⎠. (4.2)

In what follows, we will need some auxiliary statements, which easily follow from what is well known in the
literature and which we compile into the next lemma.

Lemma 4.1. Let B be any (N, m)-incidence matrix of some oriented connected graph. Then the following
properties hold (with ŷ referring to the vector of upper transmission bounds):

1. kerBT = R(1, . . . , 1)T .
2. For any integer p such that 1 ≤ p ≤ N , each (N − p, m)-submatrix of B has rank N − p.
3. ∀ε > 0, ∃Δ′ > 0, ∀ρj ∈ [0, Δ′), ∀y ∈ [−ŷ, ŷ] : ‖∇L(y)‖ < ε.
4. ∃Δ′′ > 0, ∀ρj ∈ [0, Δ′′), ∀y ∈ [−ŷ, ŷ]:

if ∇T L(y)z = BT z and zi = 0 for some i then z = 0.

Proof. For 1., see Biggs ([1], Prop. 4.3). In particular, rankB = N − 1. For 2., assume that the rank of some
(N −p, m)-submatrix of B is smaller than N −p. Then, successively joining the p left out rows to this submatrix
and thus reconstructing B can increase the rank at most by p − 1, because the last row is already a linear
combination of all the remaining N −1 rows (see 1.). Whence a contradiction with rankB = N −1 (see 1.). 3. is
an immediate consequence of (3.2). Concerning 4., it follows from 3. that for small enough transmission losses,
∇L(y) can be considered arbitrarily small for all y in the indicated compact range. Since rankB = N − 1,
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one has rank (∇L(y) − B) ≥ N − 1 for small losses. If this rank strictly increases, then the dimension of the
corresponding kernel strictly decreases, hence ker(∇T L(y) − BT ) = {0} by 1. Otherwise, this rank remains
N − 1, hence the corresponding kernel stays one-dimensional. Now, by 1. and a continuity argument there
exists some v �= 0, which can be chosen arbitrarily close to (1, . . . , 1)T such that ker(∇T L(y) − BT ) = Rv. In
either case, the asserted implication in 4. follows. �

The following lemma provides some initial properties of the constraint mapping H defined in (4.2). In
particular it clarifies under which conditions the inequality system (4.1) satisfies the Mangasarian-Fromovitz
or Linear Independence Constraint Qualification (positive or complete linear independence of active gradients).
Moreover, information pertaining to the Lagrange multipliers associated to (3.3) is derived. For clarity of
presentation, we will need to split the matrix ∇L(y)−B into specific submatrices according to the parameters l
and k of activity and congestion:

∇L(y) − B =
(

∇L1(y) − B1

∇L2(y) − B2

)
=
(

∇L11(y) − B11 ∇L12(y) − B12

∇L21(y) − B21 ∇L22(y) − B22

)
.

Lemma 4.2. Let (ᾱ, β̄, q̄, ȳ) be a solution to (3.5) satisfying (3.6). Then, there exists some Δ > 0 such that
under the condition ρj ∈ [0, Δ) (j = 1, . . . , m) the following properties hold:

1. (a) The rows of ∇H(q̄, ȳ) are positively linearly independent.
(b) If l = N (all generators active) or k = m (no congestion) then ∇H(q̄, ȳ) is surjective.
(c) If 1 ≤ l < N , 0 ≤ k < m, and B21 is surjective, then ∇H(q̄, ȳ) is surjective.

2. H(q̄, ȳ) = 0.
3. (a) Concerning the ISO problem (3.3) (with fixed parameters (ᾱ, β̄)), strict complementarity holds for

the first l demand-satisfaction constraints (3.1) (corresponding to active producers).
(b) If k = m (no congestion) or all multipliers associated with the flow constraints y(2) ≤ ŷ(2) vanish,

then strict complementarity holds for all demand-satisfaction constraints (3.1).

Proof. The Jacobian of the mapping H(q, y) at (q̄, ȳ) becomes

∇H(q̄, ȳ) =

⎛⎜⎜⎝
−I1 0 ∇L11(ȳ) − B11 ∇L12(ȳ) − B12

0 −I2 ∇L21(ȳ) − B21 ∇L22(ȳ) − B22

0 −I2 0 0
0 0 0 I3

⎞⎟⎟⎠. (4.3)

Assume a relation ∇T H(q̄, ȳ)c = 0 for some c ≥ 0⎛⎜⎜⎝
−I1 0 0 0
0 −I2 −I2 0

(∇L11(ȳ) − B11)T (∇L21(ȳ) − B21)T 0 0
(∇L12(ȳ) − B12)T (∇L22(ȳ) − B22)T 0 I3

⎞⎟⎟⎠
⎛⎜⎜⎝

c1

c2

c3

c4

⎞⎟⎟⎠ = 0.

Then
c1 = 0, c2 = −c3, (∇L21(ȳ) − B21)T c2 = 0, (∇L22(ȳ) − B22)T c2 = −c4. (4.4)

Given that c2, c3 ≥ 0, it follows that c2 = c3 = 0, and so c4 = 0 as well. Therefore, c = 0, proving the
positive linear independence of the rows of ∇H(q̄, ȳ) stated in 1.(a). Inspecting again (4.4), we observe, that
the conclusion c = 0 could equally well be drawn from the relation ∇T H(q̄, ȳ)c = 0 upon replacing the original
assumption c ≥ 0 by the injectivity of (∇L21(ȳ) − B21)T . This, however, follows from the assumed surjectivity
of B21 if Δ > 0 in the statement of our lemma is chosen small enough as to maintain surjectivity of ∇L21(ȳ)−B21

via statement 3. of Lemma 4.1. This shows 1.(c). Concerning 1.(b), consider the case l = N first, which implies
that the third row block of ∇H(q̄, ȳ) in (4.3) is missing. Surjectivity of ∇H(q̄, ȳ) is obvious then. If in contrast
k = m, then the fourth row block of ∇H(q̄, ȳ) in (4.3) is missing. Surjectivity of ∇H(q̄, ȳ) would follow now from
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the surjectivity of (∇L2(ȳ)−B2). As per Lemma 4.1 (statement 2.), B2 has rank N − l. Then, as a consequence
of Lemma 4.1 (statement 3.), there exists some Δ > 0 such that (∇L2(ȳ) − B2) has rank N − l too whenever
ρj ∈ [0, Δ), for all j = 1, . . . , m and Δ > 0. In other words, (∇L2(ȳ) − B2) is surjective and 1.(b) is proven.

Statement 1.(a) guarantees the existence of Lagrange multipliers such that the first-order optimality condi-
tions of (3.3) hold for a solution (ᾱ, β̄, q̄, ȳ). Accordingly, there exist λ̄1, λ̄2, μ̄, η̄ ≥ 0 such that

(
ᾱ + 2[diag β̄]q̄

0

)
+ ∇T H(q̄, ȳ)

⎛⎜⎜⎝
λ̄(1)

λ̄(2)

μ̄
η̄

⎞⎟⎟⎠ = 0 (4.5)

H(q̄, ȳ) • (λ̄1, λ̄2, μ̄, η̄) = 0. (4.6)

Here, we let “•” denote the Hadamard, or component-wise, product. Then by taking into account (3.6) we
obtain the following set of relations

0 < ᾱi + 2β̄iq̄i = λ̄
(1)
i , i = 1, . . . , l (4.7)

0 < ᾱi = λ̄
(2)
i−l + μ̄i−l, i = l + 1, . . . , N (4.8)

0 = (∇L11(ȳ) − B11)T λ̄(1) + (∇L21(ȳ) − B21)T λ̄(2) (4.9)

−η = (∇L12(y) − B12)T λ̄(1) + (∇L22(y) − B22)T λ̄(2). (4.10)

From (4.7) we derive statement 3.(a). Under any of the assumptions of statement 3.(b), (4.9) and (4.10) combine
to

(∇L(ȳ) − B)T

(
λ̄(1)

λ̄(2)

)
= 0.

Choosing Δ in the assertion of this lemma equal to Δ′′ in statement 4. of Lemma 4.1, we may draw the following
conclusion: if there existed i ∈ {l+1, . . . , N} such that λ̄

(2)
i−l = 0 then λ̄(1) = λ̄(2) = 0, a contradiction with (4.7).

Therefore, λ̄
(2)
i−l > 0 and statement 3.(b) follows.

In order to prove statement 2., we first observe that Hi(q̄, ȳ) = 0 for i > N because by definition of q(2) and y(2)

in (4.2) via (3.6), one has that q̄(2) = 0 and ȳ(2) = ŷ(2). Moreover, (4.7) along with (4.6) yields that Hi(q̄, ȳ) = 0
for i ≤ l. It remains to prove that Hi(q̄, ȳ) = 0 for i ∈ {l + 1, . . . , N}. This would follow easily from (4.6) and
the just proven statement 3.(b) of the lemma in the case of k = m (no congestion). The case of congestion
requires a more subtle reasoning, however. Therefore, assume there exists some i∗ ∈ {l + 1, . . . , N} such that
Hi∗(q̄, ȳ) < 0. Given the structure of H and noting that the loss function L has nonnegative components, this
amounts to saying that

0 ≤ di∗ + Li∗ (ȳ) < q̄i∗ +
m∑

j=1

bi∗j ȳj. (4.11)

Recalling that i∗ is chosen among the set of inactive producers, we derive that

m∑
j=1

bi∗j ȳj > 0. (4.12)

Now, for any i1 ∈ {1, . . . , N}, we define i2 ∈ {1, . . . , N} to be a critical neighbor of i1 if there exists some
j ∈ {1, . . . , m} such that ∣∣bi1j

∣∣ =
∣∣bi2j

∣∣ = 1, bi1jbi2j = −1, bi1j ȳj > 0. (4.13)
We define the set Π ⊆ {1, . . . , N} to consist of our fixed node i∗, all its critical neighbors, all the critical neighbors
of these critical neighbors etc. Define Λ ⊆ {1, . . . , m} to consist of those transmission lines connecting nodes
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inside Π only. Then, Π×Λ constitutes a subgraph of the original one which is connected again by construction
(there exists a path from any node in Π to i∗). Consequently, the associated submatrix of B is again the incidence
matrix of a connected oriented graph. Therefore, we can invoke statement 1. of Lemma 4.1 to conclude that∑

i∈Π bij = 0 for all j ∈ Λ. This in turn implies that∑
i∈Π

∑
j∈Λ

bij ȳj = 0. (4.14)

Next we observe that ∑
j∈Λc

bij ȳj ≤ 0 ∀i ∈ Π. (4.15)

Indeed, otherwise there exists some i ∈ Π and j ∈ Λc with bij ȳj > 0. In particular, bij �= 0, whence |bij | = 1.
Moreover, let ia ∈ {1, . . . , N} be the uniquely defined node such that bijbiaj = −1 (i.e., ia is the node joined
with i via edge j). Then, by definition, ia is a critical neighbor of i, whence ia ∈ Π. Therefore, the edge j joining
i and ia belongs to Λ which contradicts j ∈ Λc. Now, combining (4.12) with (4.15) yields

∑
j∈Λ bi∗j ȳj > 0

which along with i∗ ∈ Π and (4.14) allows to infer the existence of some i∗∗ ∈ Π such that
∑

j∈Λ bi∗∗j ȳj < 0.
Then, the demand satisfaction at i∗∗ provides that (taking into account (4.15) for i∗∗)

0 ≤ di∗∗ + Li∗∗ (ȳ) ≤ q̄i∗∗ +
m∑

j=1

bi∗∗j ȳj < q̄i∗∗ .

In other words, i∗∗ is an active producer, hence i∗∗ ≤ l. Finally, we observe, that for each critical neighbor i′

of i∗ we may modify the flow vector ȳ to some ỹ such that (q̄, ỹ) remains feasible for the ISO problem (3.3)
(i.e., H (q̄, ỹ) ≤ 0) and that Hi′ (q̄, ỹ) < 0. Indeed, assuming that i′ and i∗ are joined by some edge j′, we may
define ỹ as

ỹk :=

⎧⎨⎩
ȳk k �= j′

ȳj′ − ε k = j′, bi∗j′ = 1
ȳj′ + ε k = j′, bi∗j′ = −1,

where ε > 0 is chosen small enough to guarantee that the demand at node i∗ remains satisfied after the
modification (which is possible by (4.11)):

q̄i∗ +
m∑

j=1

bi∗j ỹj ≥ di∗ + Li∗ (ȳ). (4.16)

Moreover, let ε > 0 be small enough such that ỹj ≤ ŷj . This is possible due to ȳj ≤ ŷj (by feasibility of ȳ)
and upon observing that ȳj > 0 in case of bi∗j = 1 and ȳj < 0 in case of bi∗j = −1 (see (4.13)). Thus, ỹ is
feasible for the constraint y ≤ ŷ. In addition, we have that bi′j′ ỹj′ = bi′j′ ȳj′ + ε by construction of ỹj′ and by
bi∗j′ = −bi′j′ . Then, the demand satisfaction at node i′ reads as

di′ + Li′ (ȳ) ≤ q̄i′ +
m∑

j=1

bi′j ȳj = q̄i′ +
m∑

j=1

bi′j ỹj − ε.

Since the demand satisfaction relations at nodes i′ and i∗ are the only ones affected by the transition from ȳ to ỹ,
it follows that (q̄, ỹ) remains feasible for (3.3) (i.e., H (q̄, ỹ) ≤ 0) and Hi′ (q̄, ỹ) < 0 (demand is strictly exceeded
by offer). In this way, we have shifted the strict inequality Hi∗ (q̄, ȳ) < 0 to the strict inequality Hi′ (q̄, ỹ) < 0 at
any of the critical neighbors i′ of i∗ just by modifying the flow vector. This procedure can now be repeated for
any of the critical neighbors of i′, and so after finitely many steps one arrives at a feasible solution (q̄, y′) of (3.3)
such that Hi∗∗ (q̄, y′) < 0 for the node i∗∗ ∈ Π constructed above. Since the objective function of (3.3) does not
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depend on y but just on q, it follows from the fact that that (q̄, ȳ) was an optimal solution to (3.3), that (q̄, y′)
is also an optimal solution to (3.3). But now, using the already proven fact that demand satisfaction comes as
an equality at solutions to (3.3) for all active generators, we infer from the relation i∗∗ ≤ l shown above that
Hi∗∗ (q̄, y′) = 0, a contradiction. Consequently, our original assumption Hi∗(q̄, ȳ) < 0 is wrong showing that
Hi(q̄, ȳ) = 0 for i ∈ {l + 1, . . . , N}. This completes the proof of the lemma. �

The surjectivity condition in statement 1.(c) of Lemma 4.2 can be interpreted as follows in a special case: if
l = N − 1 (all generators but one are active) then there must exist at least one non-congested transmission line
leading to the non-active generator.

We next turn to strong regularity of solutions to the ISO problem. We recall that the ISO problem (3.3)
with fixed parameters (ᾱ, β̄) satisfies the strong second-order sufficient condition (SSOSC) at one of its solutions
(q̄, ȳ) if 〈

d,∇2
(q,y)L(q̄, ȳ, ξ̄)d

〉
> 0 ∀d �= 0 : ξ̄i∇Hi(q̄, ȳ)d = 0 (i = 1, . . . , 2N + m − l − k) (4.17)

holds for all ξ̄ such that ∇(q,y)L(q̄, ȳ, ξ̄) = 0. Here,

L(q, y, ξ) :=
N∑

i=1

ci(ᾱi, β̄i, qi) +
2N+m−l−k∑

i=1

ξiHi(q, y)

refers to the Lagrangian associated with (3.3) for fixed (α, β) = (ᾱ, β̄) and the ξ̄ denote the Lagrange multipliers
associated with the solution (q̄, ȳ), assuming, of course, that they exist. Note that in the formulation of (4.17)
we have already exploited the fact that all 2N + m− l− k components of H are active at (q̄, ȳ) by statement 2.
of Lemma 4.2.

Proposition 4.1. Let (ᾱ, β̄, q̄, ȳ) be a solution to (3.5) satisfying (3.6). Then, there exists some Δ > 0 such
that under the condition ρj ∈ (0, Δ) (j = 1, . . . , m) the following holds true: if l = N (all generators active) or
k = m (no congestion) then ∇H(q̄, ȳ) is surjective and (4.17) is satisfied at (q̄, ȳ). The same conclusion can
also be drawn if ρj = 0 (j = 1, . . . , m) under the additional assumption that the network graph is a tree (i.e., it
does not contain cycles).

Proof. First note that ∇H(q̄, ȳ) is surjective under the assumption l = N or k = m by statement 1.(b) of
Lemma 4.2 . Hence, the Lagrange multipliers are unique and it suffices to verify (4.17). Exploiting the explicit
definitions of ci and H , one calculates

∇2
(q,y)L(q̄, ȳ, ξ̄) =

⎛⎜⎜⎜⎝
2[diag β̄] 0 · · · 0

0 ρ1

∑N
i=1 ξ̄i|bi1| · · · 0

...
...

. . .
...

0 0 · · · ρm

∑N
i=1 ξ̄i|bim|

⎞⎟⎟⎟⎠.

This diagonal matrix contains only positive entries. Indeed, this is clear for the first block because β̄i > 0
(see (3.6)). For the remaining entries

ρj

∑N

i=1
ξ̄i|bij | (4.18)

note that ρj > 0 by assumption. Moreover, ξ̄i > 0 for i = 1, . . . , N . To see this, recall that
(
ξ̄1, . . . , ξ̄l

)
and(

ξ̄l+1, . . . , ξ̄N

)
correspond to the Lagrange multipliers of the demand satisfaction relations (first N components

of H) for active and non-active generators, respectively. Now statements 3.(a) and 3.(b) of Lemma 4.2 yield
that strict complementarity (i.e., ξ̄i > 0 for i = 1, . . . , N ) holds whenever l = N or k = m. On the other hand,
as our network was supposed to be a connected graph, for each index j there exists at least one (exactly: two) i
such that |bij | = 1. Consequently, (4.18) is strictly positive for all j = 1, . . . , m. Now, with ∇2

(q,y)L(q̄, ȳ, ξ̄)
being positive definite, (4.17) is evidently satisfied at (q̄, ȳ).
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For the second assertion, assume that ρj = 0 (j = 1, . . . , m) and the network does not contain cycles. Then,

∇2
(q,y)L(q̄, ȳ, ξ̄) =

(
2[diag β̄] 0

0 0

)
.

Choose an arbitrary d as indicated in (4.17). In particular, d �= 0. Moreover, as already shown above, one has
that ξ̄i > 0 for i = 1, . . . , N holds whenever l = N or k = m. Consequently, by (4.17), ∇Hi(q̄, ȳ)d = 0 for
i = 1, . . . , N . Using the partition d = (d1, d2), the concrete shape of ∇H(q̄, ȳ) (see first two row blocks in (4.3)
and notice that the part associated with the loss function vanishes due to ρj = 0 for j = 1, . . . , m) yields that
d1 +Bd2 = 0. However, since B is injective as the incidence matrix of a tree, d �= 0 already implies that d1 �= 0.
But then, 〈

d,∇2
(q,y)L(q̄, ȳ, ξ̄)d

〉
= 2

〈
d1, [diag β̄]d1

〉
> 0

as was to be shown in (4.17). �
As a consequence of Proposition 4.1, the solutions to the ISO problem (3.3) are strongly regular in the

sense of Robinson under the indicated assumptions, i.e., if (ᾱ, β̄, q̄, ȳ) is a solution to (3.5) satisfying (3.6),
then, locally around (ᾱ, β̄, q̄, ȳ) all solutions of (3.3) can be parameterized by a single-valued and Lipschitzian
mapping (q (α, β) , y (α, β)). This allows, in particular, to locally replace the EPEC (3.5) by a simple equilibrium
problem without explicit equilibrium constraints and thus to make it amenable to what is called the Implicit
Programming Approach:

min
(αi,βi)∈R2

−fi(αi, βi, q (α, β) , y (α, β)) (i = 1, . . . , N).

Note, however, that this approach is not possible in all relevant cases. For instance, if the network graph
contains cycles, as it is typically the case, then Proposition 4.1 does not apply to the loss-free model (ρj = 0
(j = 1, . . . , m)).

5. Stationarity of EPEC solutions

Given the previous results pertaining to the structural properties of the spot market EPEC, we are now
in a position to begin our analysis of stationary solutions to EPECs. Here, we base our approach on using
so-called M-stationarity; meaning that the considered stationarity conditions are obtained on the basis of the
limiting normal cone (see Sect. 2). We rely on a version of the M-stationary conditions for solutions to EPECs
provided in [21] by Outrata which is based on a corresponding result for MPECs by Ye and Ye [28]. We adopt
the statement to the setting of our spot market EPEC:

Theorem 5.1. Let
(
ᾱ, β̄, q̄, ȳ

)
be a solution to (3.5). If for all i = 1, . . . , N , the multifunctions

Ψi(u) :=
{
(αi, βi, q, y)

∣∣u ∈ F (ᾱ−i, αi, β̄−i, βi, q, y) + NG(q, y)
}

(5.1)

are calm at
(
0, ᾱi, β̄i, q̄, ȳ

)
(see introduction), then for all i = 1, . . . , N , there exist vi such that the following

relations hold

∇(αi,βi)fi(ᾱi, β̄i, q̄, ȳ) = ∇T
(αi,βi)

F (ᾱ, β̄, q̄, ȳ)vi (5.2)

∇(q,y)fi(ᾱi, β̄i, q̄, ȳ) ∈ ∇T
(q,y)F (ᾱ, β̄, q̄, ȳ)vi + D∗NG(q̄, ȳ,−F (ᾱ, β̄, q̄, ȳ))(vi). (5.3)

Here, D∗ refers to the coderivative presented in the introduction. Before benefiting from this characterization
of EPEC solutions one has to cope with two tasks: first, one has to be able to check the constraint qualification
represented by the calmness of (5.1); second, an explicit formula for calculating the coderivative in terms of the
problem data is needed. We address these tasks in the following two subsections.
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5.1. Verification of calmness

According to a well-known result by Robinson, a multifunction with polyhedral graph (i.e., the graph of
which is a finite union of polyhedra) is calm at any point of its graph. Hence, the simplest way to verify
calmness of (5.1) consists in checking the polyhedrality of its graph. The following observation is evident: if
the mapping F is linear and transmission losses are ignored, i.e., ρj = 0 (j = 1, . . . , m), then the mappings Ψi

are calm at all points of their graph. Indeed, in the loss-free case the feasible set G of the ISO problem (3.3)
becomes a polyhedron, thus making the graph of the mapping NG a finite union of polyhedra. Then given the
assumed linearity of F , the graph of Ψi is also a finite union of polyhedra. Unfortunately, the mappings

F (ᾱ−i, αi, β̄−i, βi, q, y) =
(

(ᾱ−i, αi) + 2[diag
(
β̄−i, βi

)
]q

0

)
are not linear in our case due to the bilinear term βiqi. Under the special assumption known as partial bidding
(cf. [11,12]), the producers’ quadratic cost term is assumed to be known to every market participant and thus,
it is not considered to be a the decision variable. In such a case, F is indeed linear and the calmness of (5.1)
can be taken for granted in the loss-free case (this fact was exploited, for instance in [7]). However here, we are
not insisting on the rather restrictive assumption of partial bidding.

When polyhedrality fails, another way of verifying calmness is to check the stronger Aubin property (see
introduction) by using available criteria. Indeed, we have the following result:

Proposition 5.1. Under the conditions of Proposition 4.1, the multifunctions Ψi in (5.1) have the Aubin
property and, hence, are calm at

(
0, ᾱi, β̄i, q̄, ȳ

)
.

Proof. Under the assumptions of Proposition 4.1, surjectivity of ∇H (q̄, ȳ) holds true and the strong second-
order sufficient condition (4.17) is satisfied. By Theorem 4.1 in [24], the generalized equation

0 ∈ C (α, β, q, y, λ) + N
RN+m×R

2N+m−l−k
+

(q, y, λ)

with

C (α, β, q, y, λ) :=
(

F (α, β, q, y) + ∇T H (q, y)λ
−H (q, y)

)
is strongly regular (see introduction) at

(
ᾱ, β̄, q̄, ȳ, λ̄

)
, where λ̄ is the uniquely defined (by surjectivity of

∇H (q̄, ȳ)) Lagrange multiplier satisfying ∇T H (q̄, ȳ) λ̄ = −F
(
ᾱ, β̄, q̄, ȳ

)
. Consequently, the mapping F de-

fined by the partial linearization of C as

F (η) := {(q, y, λ) |η ∈ C
(
ᾱ, β̄, q̄, ȳ, λ̄

)
+ ∇(q,y,λ)C

(
ᾱ, β̄, q̄, ȳ, λ̄

) (
(q, y, λ) −

(
q̄, ȳ, λ̄

))
+ N

RN+m×R
2N+m−l−k
+

(q, y, λ)}

is locally Lipschitz and single-valued around
(
0, q̄, ȳ, λ̄

)
(see introduction). Next we put

Φ (ξ, q, y, λ) :=
(

F
(
ᾱ, β̄, q̄, ȳ

)
+ ∇(q,y)F

(
ᾱ, β̄, q̄, ȳ

)
((q, y) − (q̄, ȳ)) + ∇T H (q, y)λ

−H (q, y)

)
− ξ.

It is immediately seen that

C
(
ᾱ, β̄, q̄, ȳ, λ̄

)
= Φ

(
0, q̄, ȳ, λ̄

)
, ∇(q,y,λ)C

(
ᾱ, β̄, q̄, ȳ, λ̄

)
= ∇(q,y,λ)Φ

(
0, q̄, ȳ, λ̄

)
.

Consequently,

F (η) = {(q, y, λ) |η ∈ Φ
(
0, q̄, ȳ, λ̄

)
+ ∇(q,y,λ)Φ

(
0, q̄, ȳ, λ̄

) (
(q, y, λ) −

(
q̄, ȳ, λ̄

))
+ N

RN+m×R
2N+m−l−k
+

(q, y, λ)}.



M-STATIONARY POINTS TO AN EPEC 307

Since F is locally Lipschitz and single-valued around
(
0, q̄, ȳ, λ̄

)
, it follows that the generalized equation

0 ∈ Φ (ξ, q, y, λ) + N
RN+m×R

2N+m−l−k
+

(q, y, λ)

is strongly regular at
(
0, q̄, ȳ, λ̄

)
and, hence (see introduction), that the mapping

ξ 	→
{
(q, y, λ) |0 ∈ Φ (ξ, q, y, λ) + N

RN+m×R
2N+m−l−k
+

(q, y, λ)
}

is locally Lipschitz and single-valued around
(
0, q̄, ȳ, λ̄

)
. By definition of Φ and upon observing that

N
RN+m×R

2N+m−l−k
+

(q, y, λ) = {0} × N
R

2N+m−l−k
+

(λ)

this amounts to saying that the mapping

ξ 	→
{

(q, y, λ)
∣∣∣ ( ξ1

ξ2

)

∈
(

F
(
ᾱ, β̄, q̄, ȳ

)
+ ∇(q,y)F

(
ᾱ, β̄, q̄, ȳ

)
((q, y) − (q̄, ȳ)) + ∇T H (q, y)λ

−H (q, y) + N
R

2N+m−l−k
+

(λ)

)}

is locally Lipschitz and single-valued around
(
0, q̄, ȳ, λ̄

)
. Consequently, the mapping

ξ1 	→
{

(q, y, λ)
∣∣∣ ( ξ1

0

)
(5.4)

∈
(

F
(
ᾱ, β̄, q̄, ȳ

)
+ ∇(q,y)F

(
ᾱ, β̄, q̄, ȳ

)
((q, y) − (q̄, ȳ)) + ∇T H (q, y)λ

−H (q, y) + N
R

2N+m−l−k
+

(λ)

)}

is locally Lipschitz and single-valued around
(
0, q̄, ȳ, λ̄

)
. This implies that also the mapping

ξ1 	→
{
(q, y) |ξ1 ∈ F

(
ᾱ, β̄, q̄, ȳ

)
+ ∇(q,y)F

(
ᾱ, β̄, q̄, ȳ

)
((q, y) − (q̄, ȳ)) + NG (q, y)

}
(5.5)

is locally Lipschitz and single-valued around (0, q̄, ȳ). Indeed, note first that in view of the surjectivity of
∇H (q̄, ȳ), one has

NG (q, y) =
{

v|∃λ : v = ∇T H (q, y)λ, H (q, y) ∈ N
R

2N+m−l−k
+

(λ)
}

for (q, y) close to (q̄, ȳ). Moreover, again by surjectivity of ∇H (q̄, ȳ) and due to ∇T H (q̄, ȳ) λ̄ = −F
(
ᾱ, β̄, q̄, ȳ

)
,

the equation
ξ1 − F

(
ᾱ, β̄, q̄, ȳ

)
−∇(q,y)F

(
ᾱ, β̄, q̄, ȳ

)
((q, y) − (q̄, ȳ)) = ∇T H (q, y)λ

has a unique solution λ which is close to λ̄ if (ξ1, q, y) is close to (0, q̄, ȳ). These two observations allow to transfer
the local Lipschitz and uniqueness statement from (5.4) to (5.5). This, however, means that the generalized
equations

0 ∈ F (ᾱ−i, αi, β̄−i, βi, q, y) + NG(q, y) (i = 1, . . . , N)
are strongly regular at

(
ᾱi, β̄i, q̄, ȳ

)
. Then, from Proposition 3.2 in [20], we infer that the mappings

(u1, u2, u3) 	→
{
(αi, βi, q, y)

∣∣u3 ∈ F (ᾱ−i, αi, β̄−i, βi, q, y) + NG(u1 + q, u2 + y)
}
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have the Aubin property around
(
0, ᾱi, β̄i, q̄, ȳ

)
. All the more, the restricted mappings

(0, 0, u3) 	→
{
(αi, βi, q, y)

∣∣u3 ∈ F (ᾱ−i, αi, β̄−i, βi, q, y) + NG(q, y)
}

,

which are nothing else but Ψi, have the Aubin property around
(
0, ᾱi, β̄i, q̄, ȳ

)
. �

Note, that Proposition 5.1 cannot be applied in the loss-free case whenever the network graph contains cycles
because then Proposition 4.1 cannot be invoked. Indeed, the following example demonstrates that the Aubin
property for the mappings Ψi in (5.1) gets lost in such cases.

Example 5.1. Given the spot market EPEC (3.5), let (ᾱ, β̄, q̄, ȳ) be a solution such that (3.6) is satisfied.
Furthermore, let N = 3, m = 3, l = 3, k = 3, ρj = 0 (j = 1, 2, 3), i.e., there is neither congestion nor
transmission losses nor non-active generators, and define a cyclic graph via the incidence matrix

B =

⎛⎝ −1 0 1
1 −1 0
0 1 −1

⎞⎠.

Since l = N , Lemma 4.2 indicates that ∇H(q̄, ȳ) is surjective. Then we can rewrite the normal cone NG(q̄, ȳ)
(cf. Thm. 6.14 [25])

NG(q̄, ȳ) = ∇T H(q̄, ȳ)NR
3
−
(H(q̄, ȳ)).

From ∇H(q̄, ȳ) = (−I| − B) (see (4.3) with the special data of this example) and from the concrete shapes of F
and B we derive that, for any i ∈ {1, . . . , N},

u = (u1, . . . , u6) ∈ F (ᾱ−i, αi, β̄−i, βi, q, y) + NG(q̄, ȳ) =⇒
∃λ̄ =

(
λ̄1, λ̄2, λ̄3

)
∈ NR

3
−
(H(q̄, ȳ)) : u4 = λ̄1 − λ̄2, u5 = λ̄2 − λ̄3, u6 = λ̄3 − λ̄1.

Consequently, if u ∈ F (ᾱ−i, αi, β̄−i, βi, q, y) + NG(q̄, ȳ), then necessarily u4 + u5 + u6 = 0. By contraposition,
if u4 + u5 + u6 �= 0 for some u, then necessarily Ψi(u) = ∅ for the multifunctions defined in (5.1). As one may
now easily construct a sequence u(n) → 0 with Ψi(u(n)) = ∅, it follows that Ψi cannot have the Aubin property
around

(
0, ᾱi, β̄i, q̄, ȳ

)
.

It follows that in the loss-free case one can neither rely on a polyhedrality argument nor on a verification
of the Aubin property in order to verify calmness. Fortunately, the loss of polyhedrality turns out to be weak
enough to allow a direct derivation of the calmness of Ψi. In Section 7 we prove the calmness result in a slightly
more general setting then needed for our purposes here. This leads to the next proposition.

Proposition 5.2. Let (ᾱ, β̄, q̄, ȳ) be a solution to (3.5) satisfying (3.6). If for all j = 1, . . . , m, ρj = 0, then for
all i = 1, . . . , N the multifunctions Ψi in (5.1) are calm at (0, ᾱi, β̄i, q̄, ȳ).

Proof. Being that Ψi arises from the first order optimality conditions of the ISO problem, we can use Theorem 7.1
for such a task. Without loss of generality, let i = 1, then

F (ᾱ−1, α1, β̄−1, β1, q, y) =

⎛⎝ α1 + 2β1q1

ᾱ−1 + 2[diag β̄−1]q−1

0

⎞⎠.

Thus, F (ᾱ−1, α1, β̄−1, β1, q, y) has the form:

F (ᾱ−1, α1, β̄−1, β1, q, y) =
(

Δ1(α1, β1, q, y)
Δ2(q, y)

)
,
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where Δ1(α1, β1, q, y) = α1 + 2β1q1 and

Δ2(q, y) =
(

ᾱ−1

0

)
+

(
0 2[diag β̄−1] 0

0 0 0

)⎛⎜⎜⎝
q1

q−1

y

⎞⎟⎟⎠.

Then assumption 1. of Theorem 7.1 is fulfilled if we substitute (α1, β1) = u1, (q, y) = z, t1 = 1, t2 = N − 1+m,
and C = G. Moreover, G is polyhedral and convex, as H(q, y) is affine linear due to the fact that ρj = 0 for
all j = 1, . . . , m. Then Lemma 4.2 (statement 1.(a)) ensures the existence of a Slater point (q̃, ỹ) ∈ G. Thus,
assumption 2. is satisfied. Finally, by noting that

∇(α1,β1)Δ1(ᾱ1, β̄1, q̄, ȳ) = (1, 2q̄1) �= (0, 0),

we see that assumption 3. is fulfilled. Therefore, Theorem 7.1 implies Ψ1 is calm at (0, ᾱ1, β̄1, q̄, ȳ). �

5.2. A transformation formula for the coderivative

In this subsection we deal with the question of how to calculate the coderivative D∗NG in the stationarity
conditions (5.3). Note that calculating this coderivative from scratch on the basis of the definition provided
in the introduction may be very difficult, if at all possible. On the other hand, one has access to a simple
formula for D∗NR

p
−

and may then use a convenient transformation formula to get D∗NG in the case where G

is described by finitely many smooth inequalities satisfying a constraint qualification. More precisely, we first
have (see e.g., [5] or [19]): For any (z̃, ṽ) ∈ grNR

p
− it holds that for all ṽ∗ ∈ R

p

D∗NR
p
−(z̃, ṽ)(ṽ∗) =

{
∅ if ∃i : ṽiṽ

∗
i �= 0

{x∗ ∈ R
t|x∗

i = 0 ∀i ∈ Ia, x∗
i ≥ 0 ∀i ∈ Ib} else,

(5.6)

where
Ia := {i|z̃i < 0} ∪ {i|ṽi = 0, ṽ∗i < 0}, Ib := {i|z̃i = 0, ṽi = 0, ṽ∗i > 0}.

Second, the following transformation formula was proved in [18] (Thm. 3.4), [17] (Thm. 1.127):

Theorem 5.2. Let C := {z ∈ R
t |Ai(z) ≤ 0 (i = 1, . . . , p)}, where A ∈ C2(Rt; Rp). Fix z̄ ∈ C and v̄ ∈ NC (z̄),

with A(z̄) = 0. If the vectors {∇Ai(z̄)}p
i=1 are linearly independent (i.e., ∇A(z̄) is surjective), then for all

v∗ ∈ R
t

D∗NC(z̄, v̄)(v∗) =

(
p∑

i=1

λ̄i∇2Ai(z̄)

)
v∗ + ∇T A(z̄)D∗NR

p
−(0, λ̄)(∇A(z̄)v∗), (5.7)

where λ̄ is uniquely defined by the relation ∇T A(z̄)λ̄ = v̄.

Evidently, (5.7) allows to calculate explicitly D∗NC upon using (5.6).
Concerning the second term occurring in both formulae (5.7) and (5.9), we derive from (5.6) that:

∇T A(z̄)D∗NR
p
−(0, λ̄)(∇A(z̄)v∗) ={

∅ if ∃i : λ̄i∇Ai(z̄)v∗ �= 0

∇T A(z̄){x∗ ∈ R
t|x∗

i = 0 ∀i ∈ Ia, x∗
i ≥ 0 ∀i ∈ Ib} else,

where
Ia := {i|λ̄i = 0, ∇Ai(z̄)v∗ < 0}, Ib := {i|λ̄i = 0, ∇Ai(z̄)v∗ > 0}. (5.8)
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If D∗NR
p
−(0, λ̄)(∇A(z̄)v∗) �= ∅, then one arrives at the representation

∇T A(z̄)D∗NR
p
−(0, λ̄)(∇A(z̄)v∗) = {∇T A(z̄)x∗|x∗

i = 0 (i ∈ Ia), x∗
i ≥ 0 (i ∈ Ib)}. (5.9)

Moreover, the assumed non-emptiness implies the relation

∇Ai(z̄)v∗ = 0 ∀i : λ̄i > 0. (5.10)

Now we are in a position to reformulate the abstract stationarity conditions of Theorem 5.1 in terms of our
concrete EPEC. We provide the result for two significant constellations:

Theorem 5.3. Let (ᾱ, β̄, q̄, ȳ) be a solution to (3.5) satisfying (3.6). Assume that l = N (all generators
active) or k = m (no congestion). Then there exists some Δ > 0 such that under the condition ρj ∈ (0, Δ)
(j = 1, . . . , m) (small positive losses) or ρj = 0 (j = 1, . . . , m) (no losses), the following holds true: there exists
some λ̄ ∈ R

2N+m−l−k
+ and for all i = 1, . . . , N , there exist

(
vi, wi

)
∈ R

N+m × R
2N+m−l−k such that

∇(αi,βi)fi(ᾱi, β̄i, q̄, ȳ) = ∇T
(αi,βi)

F (ᾱ, β̄, q̄, ȳ)vi (5.11)

∇(q,y)fi(ᾱi, β̄i, q̄, ȳ) = ∇T
(q,y)F (ᾱ, β̄, q̄, ȳ)vi +

⎛⎝ N∑
j=1

λ̄j∇2Hj (q̄, ȳ)

⎞⎠ vi + ∇T H (q̄, ȳ)wi

(5.12)

∇Hj (q̄, ȳ) vi = 0 ∀j : λ̄j > 0 (5.13)(
wi
)
j

= 0 ∀j : λ̄j = 0, ∇Hj (q̄, ȳ) vi < 0 (5.14)

(
wi
)
j

≥ 0 ∀j : λ̄j = 0, ∇Hj (q̄, ȳ) vi > 0 (5.15)

F (ᾱ, β̄, q̄, ȳ) = −∇T H (q̄, ȳ) λ̄. (5.16)

Proof. Note first that in all indicated constellations, ∇H (q̄, ȳ) is surjective according to Lemma 4.2, state-
ment 1.(b) and that the calmness assumption for the multifunctions (5.1) is satisfied by virtue of Propositions 5.1
(for the case ρj ∈ (0, Δ)) and 5.2 (for the case ρj = 0). Thus, we may apply Theorem 5.1. (5.2) immediately
yields (5.11). Given the surjectivity of ∇H (q̄, ȳ), we may apply Theorem 5.2 in order to derive (5.12) from (5.3)
by combining (5.7) with (5.9) and putting G := C, H := A and p := 2N + m − l − k. Note that in the
summation of Hessian terms in (5.12) one may omit indices j > N due to the components Hj being linear then.
(5.13) follows from (5.10). (5.14) and (5.15) follow from the definitions of the index sets Ia and Ib introduced
in (5.8). Finally, (5.16) characterizes the uniquely determined (by surjectivity of ∇H (q̄, ȳ)) multiplier λ̄ from
the solution of the ISO problem (3.3). �

The assumptions of Theorem 5.3 guarantee that ∇Hj (q̄, ȳ) is surjective by Lemma 4.2, statement 1.(b).
If, however, both congestion and inactivity takes place at an EPEC solution (i.e., l < N and k < m), then
surjectivity of ∇H (q̄, ȳ) may be lost. An example is given by N = 3 producers the first l = 2 of which are
active and connected by a line without congestion, whereas the third producer is inactive and connected with the
second one via a congested line (hence, k = 1). On the other hand, we know by Lemma 4.2, statement 1.(a) that
at least positive linear independence of the rows of ∇H (q̄, ȳ) remains valid. In such a case the transformation
formula (5.7) was found to still hold true as an inclusion “⊆”, where on the right-hand side of (5.7) the union
over the whole set of admissible Lagrange multipliers has to be taken (see [19], Thm. 3.1). This leads to a certain
loss of information but still allows to determine stationarity conditions that EPEC solutions have to satisfy.
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Fortunately, in the linear case one is much better off as there still exists an exact coderivative formula even if
∇H (q̄, ȳ) is not surjective. More precisely, the following holds true (see [8], Thm. 3.2, and [7], Prop. 3.2):

Theorem 5.4. Let C := {z ∈ R
t |Az ≤ b }, where b ∈ R

p and A is a matrix of order (p, t). Fix z̄ ∈ C and
v̄ ∈ NC (z̄) with Az̄ = b. Let λ̄ be any vector defined by the relation Aλ̄ = v̄ (the existence of λ̄ is guaranteed by
v̄ ∈ NC (z̄) and C being polyhedral). Denote

J := {j ∈ {1, . . . , p} |λj > 0}.

Then,

D∗NC (z̄, v̄) (v∗) =

⎧⎨⎩x∗

∣∣∣∣∣∣(x∗,−v∗) ∈
⋃

J⊆I1⊆I2⊆{1,...,p}
PI1,I2 × QI1,I2

⎫⎬⎭ , (5.17)

where

PI1,I2 = con {ai|i ∈ χ (I2) \I1} + span {ai|i ∈ I1}
QI1,I2 = {h ∈ R

n| 〈ai, h〉 = 0 (i ∈ I1) , 〈ai, h〉 ≤ 0 (i ∈ χ (I2) \I1)},

“con” and “span” refer to the conic convex and linear hulls, respectively, and

χ(I ′) := {j ∈ {1, . . . , p} | if 〈ai, h〉 ≤ 0 for i ∈ {1, . . . , p} \ I ′

and 〈ai, h〉 = 0 for i ∈ I ′, then 〈aj , h〉 = 0} (I ′ ⊆ {1, . . . , p}).

Using the last theorem, one can derive M-stationarity conditions similar to those stated in Theorem 5.3 that
would apply to settings where both congestion and inactivity occur simultaneously but losses are absent. We
skip an explicit statement of these conditions here for the sake of brevity. We also note that Theorem 5.4 can
be generalized to the case of finitely many linear inequalities in a reflexive Banach space (see [9], Thm. 4.1).

6. Explicit characterizations of solutions to the spot market EPEC

using M-stationarity conditions

With the results of the previous sections in mind, we now provide explicit characterizations of solutions to
the spot market EPEC (3.5) via M-stationarity conditions. For the sake of brevity, we restrict ourselves to one
particular solution setting, namely the loss-free case without congestion and with an acyclic network graph. In
the absence of losses and congestion, the Jacobian of the mapping H takes the form (see (4.3))

∇H(q̄, ȳ) =

⎛⎝ −I1 0 −B1

0 −I2 −B2

0 −I2 0

⎞⎠ . (6.1)

This leads to the next theorem.

Theorem 6.1. Let (ᾱ, β̄, q̄, ȳ) be a solution to (3.5) satisfying (3.6). Assume that ρj = 0 for j = 1, . . . , m (no
losses) and k = m (no congestion). Then there exists some λ̄ ∈ R

2N−l
+ and for all i = 1, . . . , N , there exist
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vi, wi

)
∈ R

N+m × R
2N−l such that

(vi)i =
{

q̄i if i ∈ {1, . . . , l}
0 if i ∈ {l + 1, . . . , N} (6.2)

vi
a + B1vi

c = vi
b + B2vi

c = 0 (6.3)

(vi)l+j = 0 ∀j ∈ {1, . . . , N − l} : λ̄N+j > 0 (6.4)

(wi)i = γi − ᾱi + 2(δi − β̄i)q̄i if i ∈ {1, . . . , l} (6.5)

(wi)i + (wi)N+i−l = γi − ᾱi if i ∈ {l + 1, . . . , N} (6.6)

(wi)j = 2β̄j(vi)j if j ∈ {1, . . . , l}, j �= i (6.7)

(wi)j + (wi)N+j−l = 2β̄j(vi)j if j ∈ {l + 1, . . . , N}, j �= i (6.8)

(wi)N+j−l = 0 if j ∈ {l + 1, . . . , N}, λ̄N+j−l = 0, (vi)j > 0 (6.9)

(wi)N+j−l ≥ 0 if j ∈ {l + 1, . . . , N}, λ̄N+j−l = 0, (vi)j < 0 (6.10)

(B1)T wi
a + (B2)T wi

b = 0 (6.11)
ᾱ1 + 2β̄1q̄1 = ᾱj + 2β̄j q̄j (j = 1, . . . , l) (6.12)

= ᾱj′ − λ̄N+j′−l (j′ = l + 1, . . . , N). (6.13)

Here (·)j identifies a concrete component of a vector, whereas lower indices “a”, “b”, “c” obey the partition of
the Jacobian in (6.1) and its transpose, respectively.

Proof. (6.2) follows from (5.11) upon calculating ∇(αi,βi)fi(ᾱ, β̄, q̄, ȳ) and ∇T
(αi,βi)

F (ᾱ, β̄, q̄, ȳ) and recalling
that q̄i > 0 for i ≤ l and q̄i = 0 for i ∈ {l + 1, . . . , N}. Next, observe that due to our assumption k = m,
we know that, by statement 3.(b) of Lemma 4.2, λ̄j > 0 for j = 1, . . . , N . Therefore, (6.3) and (6.4) are
implied by (5.13) taking into account the shape of the Jacobian in (6.1). Relations (6.5)–(6.8) and (6.11) are
derived from (5.12) (with the Hessian term missing due to linearity as a consequence of the loss-free case) upon
calculating ∇(q,y)fi(ᾱ, β̄, q̄, ȳ) and ∇T

(q,y)F (ᾱ, β̄, q̄, ȳ) and comparing components in the light of the shape of the
transposed Jacobian in (6.1). Relations (6.9) and (6.10) correspond to (5.14) and (5.15), where again λ̄j > 0 for
j = 1, . . . , N and the shape of the third row block in (6.1) are exploited. Relations (6.12) and (6.13) result from
the KKT conditions of the ISO problem (3.3) along the lines of relations (4.7), (4.8) and (4.9). Indeed, (4.9)
implies, due to the absence of losses and congestion, that

(λ̄1, . . . , λ̄N )T ∈ kerBT

which in turn results in λ̄1 = . . . = λ̄N by virtue of Lemma 4.1, statement 1. Now, (6.12) and (6.13) follow
from (4.7) and (4.8) with an appropriate change of notation. �

As an illustration, we determine the M-stationary points in an example with two settlements, i.e., the network
graph is given by a single transmission line connecting two nodes. Moreover we assume absence of transmission
losses and congestion. We are interested in EPEC solutions in which one of the two producers has become
inactive. Accordingly, let (ᾱ, β̄, q̄, ȳ) be a solution to (3.5) satisfying (3.6) such that N = 2, k = m = 1, l = 1
and ρ = 0. Then,

B =
(

−1
1

)
, ∇H(q̄, ȳ) =

⎛⎝ −1 0 −1
0 −1 1
0 −1 0

⎞⎠.

Putting i := 1, (6.2) and (6.3) provide v1 = (q̄1,−q̄1,−q̄1). In particular, since q̄1 > 0 (due to l = 1), (6.4) (with
j := 1) leads to λ̄3 = 0, since v1

2 = −q̄1 < 0. Using this last fact along with (6.13) (with j′ := 2), we derive that

ᾱ1 + 2β̄1q̄1 = ᾱ2 − λ̄3 = ᾱ2. (6.14)
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Next, (6.5) and (6.8) (with j := 2) lead to

(w1)1 = γ1 − ᾱ1 + 2(δ1 − β̄1)q̄1; (w1)2 + (w1)3 = 2β̄2(v1)2 = −2β̄2q̄1.

Finally, (6.11) along with B1 = −1, B2 = 1 implies (w1)1 = w1
a = w1

b = (w1)2. This combines with the two
relations above to

γ1 − ᾱ1 + 2(δ1 − β̄1)q̄1 + (w1)3 = −2β̄2q̄1.

Now, by virtue of λ̄3 = 0 and v1
2 < 0, (6.10) (with j := 2) allows us to deduce that (w1)3 ≥ 0. Inserting this

into the relation above and recalling (6.14), we obtain the following relations, which an EPEC solution must
necessarily satisfy under the indicated conditions:

ᾱ2 = ᾱ1 + 2β̄1q̄1; γ1 − ᾱ1 + 2(δ1 − β̄1 + β̄2)q̄1 ≤ 0. (6.15)

At this point one might wonder if an evaluation of the necessary conditions of Theorem 6.1 also for the second
generator (i.e., for i = 2) would add some additional information. The answer is negative in this simple example
because in contrast to the derivation with i = 1 it is not possible to gain a characterization for the multiplier
(w1)3. This is due to the fact that v2 = 0, which can be as easily calculated as v1 above. But then, neither (6.10)
nor (6.9) apply. We also mention that the stationarity conditions from Theorem 6.1 do not allow to uniquely
identify EPEC solutions. This however, is not a weakness of these conditions but relies on the fact that the
EPEC solutions in our problem are not isolated but rather form a continuous set (see also [12]).

As stated in the introduction, we also seek to provide a quantitative economic interpretation of our stationarity
conditions in the two-settlement example. To this aim, we reduce the obtained relations to fixed quantities of
the problem (total demand and true cost coefficients of the generators) independent of the bid coefficients.
Recall first that H(q̄, ȳ) = 0 according to Lemma 4.2, statement 2. Given the mapping H in our small example,
this amounts to the relations

q̄1 + ȳ = d1, q̄2 − ȳ = d2, q̄2 = 0.

Denoting d := d1 + d2 the total demand, these relations yield that q̄1 = d. Now, using this and substituting
for ᾱ1 in the first relation of (6.15), the second relation of (6.15) leads to the inequality

γ1 − ᾱ2 + 2(δ1 + β̄2)d ≤ 0.

In the last step we exploit the extra information ᾱ2 ≤ γ2 (the bid linear coefficient of generator 2 is not
larger than its true linear cost coefficient) which can be obtained from deriving the so-called strong stationarity
conditions for our EPEC in the small example. We note that strong stationarity leads to more precise conditions
than M-stationarity, but needs a far more restrictive constraint qualification than the latter in order to provide
necessary optimality conditions. Now by adding the indicated extra information to the last obtained inequality
and noting that β̄2, d > 0, we end up with the strict inequality

γ1 + 2δ1d < γ2.

This last relation means the following: In order to make the second generator disappear from the market in an
equilibrium solution, its true linear cost coefficient has to be strictly larger than the true linear cost coefficient
of the first generator by an amount of at least 2δ1d, where δ1 is the true quadratic cost coefficient of the
first generator and d is the total demand. This statement obviously contains much more information than the
intuitively easy to guess relation

γ1 + 2δ1d < γ2 + 2δ2d,

which is a consequence of the first one and which expresses that the marginal price of generator 2 is strictly
larger than that of generator 1.
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Remark 6.1. The explicit relations formulated here serve a number of purposes. In a small setting, as illustrated
in the example above, one is able to manipulate the various equalities and inequalities in order to directly
characterize solutions. In larger situations, one may also use the conditions in conjunction with an existing
numerical method to verify stationarity of computed solution candidates. Finally, and perhaps the aspect of
greatest interest, it is possible to reformulate the explicit conditions derived in Theorem 5.3 as a system of
smooth and non-smooth equations amenable to non-smooth Newton methods (cf. e.g., [13]). Future work in
this direction is already in progress.

7. On the Calmness of the solution mapping of a canonically-perturbed

generalized equation

In the main result of this section which is also the basis for the proof of Proposition 5.2 we rely on the
results of the following lemma, which is an immediate consequence of Theorem 4.10 in [17], i.e., the so-called
Mordukhovich Criterion (cf. Thm. 9.40 [25]):

Lemma 7.1. Let Z : R
n ⇒ R

m be a multifunction defined by

Z(x) := {y ∈ R
m|h (x, y) = 0, y ∈ Ω} ,

where h : R
n × R

m → R
k is a continuously differentiable mapping and Ω ⊆ R

m is closed. Consider a point
(x̄, ȳ) ∈ gph Z. If for all (x∗, y∗, z∗) ∈ R

n × R
m × R

k the implication

x∗ = ∇T
x h (x̄, ȳ) z∗

y∗ = −∇T
y h (x̄, ȳ) z∗

y∗ ∈ NΩ (ȳ)

⎫⎬⎭ =⇒ x∗ = 0 (7.1)

holds true, then Z enjoys the Aubin property around (x̄, ȳ).

In the following, we assume, as in the spot market EPEC, that mappings Ψi given in (5.1) arise from the
first order optimality conditions of some perturbed optimization problem. More specifically, we define:

min
z

{
f(u1, z) − uT

2 z
∣∣Az + b ∈ R

p
−
}

, (7.2)

where z ∈ R
t, u1 ∈ R

s, u2 ∈ R
t, A ∈ R

p×t, b ∈ R
p, and assume f is continuously differentiable in both the

decision variable z and the parameter u1. Then the first-order optimality conditions of (7.2) may be written:

0 ∈ ∇zf(u1, z)− u2 + NC(z), (7.3)

where C :=
{
z ∈ R

t
∣∣Az + b ∈ R

p
−
}
. Then we define

Ψ(u2) :=
{
(u1, z) ∈ R

s+t |u2 ∈ ∇zf(u1, z) + NC(z)
}

. (7.4)

Theorem 7.1. Let (ū1, 0, z̄, ) be a solution to (7.3) and assume the following conditions hold:
1.

∇zf(u1, z) =
(

Δ1(u1, z)
Δ2(z)

)
,

where Δ1 ∈ C1(Rs+t; Rt1) and Δ2(z) := Dz + c with D ∈ R
t2×t such that t1 + t2 = t and c ∈ R

t2 .
2. There exists z̃ such that Az̃ + b ∈ int R

p
−, i.e., there exists a Slater point.

3. ∇u1Δ1(ū1, z̄) is surjective.
Then the multifunction Ψ in (7.4) is calm at (0, ū1, z̄).
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Proof. We begin by defining the following multifunction:

Φ(p1, p2) :=

⎧⎨⎩(u1, z, λ) ∈ R
s+t+p

∣∣∣∣∣∣
Θ1(u1, z, λ) = p1

Θ2(z, λ) = p2

λ ∈ NR
p
−(Az + b)

⎫⎬⎭ ,

where
Θ1(u1, z, λ) := Δ1(u1, z) + AT

1 λ; Θ2(z, λ) := Δ2(z) + AT
2 λ

such that A1 ∈ R
p×t1 , A2 ∈ R

p×t2 , and A = (A1 | A2). Since C is polyhedral,

NC(z) = AT NR
p
−
(Az + b).

Consequently, by partitioning u2 = (ua
2 , u

b
2) ∈ R

t1 × R
t2 , we have

Ψ(u2) =
{
(u1, z) ∈ R

s+t
∣∣∃λ : (u1, z, λ) ∈ Φ(ua

2 , u
b
2)
}

.

We now demonstrate, for an arbitrarily fixed λ̄ with (0, 0, ū1, z̄, λ̄) ∈ gphΦ, that Φ is calm at (0, 0, ū1, z̄, λ̄),
after which we show how this implies Ψ is also calm at (0, ū1, z̄). Start by realizing that Φ(p1, p2) can be written
as Φ(p1, p2) = S(p1) ∩ T (p2), where

S(p1) := {(u1, z, λ) |Θ1(u1, z, λ) = p1 }

T (p2) :=
{

(u1, z, λ)
∣∣∣∣ Θ2(z, λ) = p2

λ ∈ NR
p
−
(Az + b)

}
.

Moreover, note that
(ū1, z̄, λ̄) ∈ Φ(0, 0) ⇒ (ū1, z̄, λ̄) ∈ S(0) ∩ T (0).

Thus, we can show that Φ is calm at (0, 0, ū1, z̄, λ̄) by using an intersection criterion developed by Klatte and
Kummer (see [14], Thm. 3.6): If the following conditions holds, then Φ is calm at (0, 0, ū1, z̄, λ̄):

S is calm at (0, ū1, z̄, λ̄)
T is calm at (0, ū1, z̄, λ̄)

S−1 has the Aubin property around (ū1, z̄, λ̄, 0)
S ∩ T (0) is calm at (0, ū1, z̄, λ̄).

Since the multifunction T is polyhedral, it follows from [23] that it is calm at (0, ū1, z̄, λ̄). Thus, we show the
remaining three conditions hold true. This will be done by checking the partially strengthened (from calmness
towards Aubin property) conditions:

1. S has the Aubin property around (0, ū1, z̄, λ̄).
2. S ∩ T (0) has the Aubin property around (0, ū1, z̄, λ̄).
3. S−1 has the Aubin property around (ū1, z̄, λ̄, 0).

Recall Lemma 7.1. For 1. and 2. put there x := p1,y := (u1, z, λ), h(x, y) := Θ1(y)− x, and Ω := R
m for 1. and

Ω := T (0) for 2., respectively. Then Z = S in 1. and Z = S ∩ T (0) in 2. The first relation in the assumption of
(7.1) then yields x∗ = −z∗. Hence, the second relation amounts to y∗ = ∇T

y h(x̄, ȳ)x∗. By using the partition
y∗ = (u∗

1, z
∗, λ∗), the first component of the previous relation, in accordance with that of y, now reads

u∗
1 = ∇T

u1
h(x̄, ȳ)x∗ = ∇T

u1
Θ1(ū1, z̄, λ̄)x∗.
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By observing that T (0) = R
s × T ′ for some T ′ ⊆ R

t × R
p, we have in both cases 1. and 2. that Ω = R

s × T ′′

for some T ′′ ⊆ R
t × R

p. Consequently, the third relation in the assumption (7.1) yields u∗
1 = 0 in either case

and hence, upon using the explicit structure of Θ1, (7.1) reduces to

∇T
u1

Δ1(ū1, z̄)x∗ = 0 ⇒ x∗ = 0.

This of course follows immediately from assumption 3. of the current theorem. For the proof of 3., put y := p1,
x := (u1, z, λ), h(x, y) := Θ1(x) − y, and Ω := R

t1 . Then Z = S−1 and the assumption of (7.1) trivially imply
x∗ = 0.

Since λ̄ was chosen arbitrarily, we have shown that Φ is calm at (0, 0, ū1, z̄, λ) for any λ such that (0, 0, ū1, z̄, λ) ∈
gph Φ. Now, introduce the multiplier mapping

Λ(u1, u2, z) :=

⎧⎨⎩λ ∈ R
p

∣∣∣∣∣∣
∇zf(u1, z) − u2 + AT λ = 0

Az + b ∈ R
p
−

λ ∈ NR
p
−
(Az + b)

⎫⎬⎭ . (7.5)

We show the claimed calmness of Ψ in (7.4) at (0, ū1, z̄). Assume by contradiction the existence of sequences
(u(i)

2 , u
(i)
1 , z(i)) → (0, ū1, z̄) with(

u
(i)
1 , z(i)

)
∈ Ψ

(
u

(i)
2

)
and d

((
u

(i)
1 , z(i)

)
, Ψ(0)

)
≥ i‖u(i)

2 ‖ ∀i. (7.6)

By definition of Ψ, the first relation in (7.6) implies the existence of a sequence λ(i) with(
u

(i)
1 , z(i), λ(i)

)
∈ Φ

(
u

(i)
2

)
∀i (7.7)

which in turn entails that λ(i)) ∈ Λ
(
u

(i)
1 , u

(i)
2 , z(i)

)
for all i due to the equivalence

λ ∈ Λ(u1, u2, z) ⇔ (u1, z, λ) ∈ Φ(u2).

Next we observe that Λ is upper Lipschitz at (ū1, 0, z̄) (see, e.g., Lem. 4.44 and Rem. 4.45 in [2]). Since
Λ(ū1, 0, z̄) is compact (as a consequence of the our Slater point assumption 2.) it follows that for sufficiently
large i the multipliers belong to a bounded set. Consequently, we may pass to a subsequence which converges
to some λ̄. Now, the closeness of Φ along with (7.7) provides that (ū1, z̄, λ̄) ∈ Φ(0), whence λ̄ ∈ Λ(ū1, 0, z̄).

Next, we endow the Cartesian product R
s+t × R

p (containing the elements ((u1, z), λ)) with a new norm
‖((u1, z), λ)‖∗ := max{‖(u1, z)‖, ‖λ‖}. Let d∗ be the distance function associated with ‖ · ‖∗ and put

B :=
⋃

(u1,z)∈Ψ(0)

Λ(u1, 0, z).

Since Φ(0) ⊆ Ψ(0) × B, one has by definition of d∗ that

d∗
((

u
(i)
1 , z(i), λ(i)

)
, Φ(0)

)
≥ d∗

((
u

(i)
1 , z(i), λ(i)

)
, Ψ(0) × B

)
= inf

(a,b,c)∈Ψ(0)×B)
max

{∥∥∥(u(i)
1 , z(i)

)
− (a, b)

∥∥∥ ,
∥∥∥λ(i) − c

∥∥∥}
≥ max

{
inf

(a,b)∈Ψ(0)

∥∥∥(u(i)
1 , z(i)

)
− (a, b)

∥∥∥ , inf
c∈B

∥∥∥λ(i) − c
∥∥∥}

≥ d
((

u
(i)
1 , z(i)

)
, Ψ(0)

)
≥ i
∥∥∥u(i)

2

∥∥∥ ∀i,
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where the last inequality is taken from the second part of (7.6). This, however, contradicts the already shown
calmness of Φ at (0, 0, ū1, z̄, λ) where (0, 0, ū1, z̄, λ) ∈ gph Φ. �
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